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Many pathogens depend on nitric oxide (NO�) detoxification

and repair to establish an infection, and inhibitors of these

systems are under investigation as next-generation antibiotics.

Because of the broad reactivity of NO� and its derivatives with

biomolecules, a deep understanding of how pathogens sense

and respond to NO�, as an integrated system, has been elusive.

Quantitative kinetic modeling has been proposed as a method

to enhance analysis and understanding of NO� stress at the

systems-level. Here we review the motivation for, current state

of, and future prospects of quantitative modeling of NO� stress

in bacteria, and suggest that such mathematical approaches

would prove equally useful in the study of other broadly reactive

antimicrobials, such as hydrogen peroxide (H2O2).
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Introduction
NO� is a potent antimicrobial produced by immune cells

to combat pathogens [1��,2]. The importance of NO� to

immunity is evidenced by the many pathogens, including

Mycobacterium tuberculosis, Neisseria meningitides, Vibrio cho-
lerae, Salmonella enterica serovar Typhimurium, Pseudomo-
nas aeruginosa, and enterohemorrhagic Escherichia coli
(EHEC), whose virulence depends on NO� detoxification

and repair systems (Table 1) [3��,4–8]. Collectively, these

studies suggest that knowledge of how pathogens sense

and respond to NO� could illuminate antibacterial strat-

egies that synergize with host immunity. Research on

NO� stress has continued for over two decades, and the

cumulative picture that has emerged is immensely com-

plex [1��,9�,10–12]. This derives from the broad reactivity

of NO� and its reactive intermediates (reactive nitrogen

species: RNS) with biomolecules [1��,9�,12]. Depending
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on the environment, dosage, and delivery rate, NO� will

destroy iron–sulfur (Fe–S) clusters, reversibly bind heme,

directly react with O2 and superoxide (O2
��), and/or be

enzymatically detoxified, whereas its derivatives (NO2
�,

N2O3, N2O4, HNO, and ONOO�) damage thiols, tyro-

sine residues, and DNA bases (Figure 1) [1��,9�,12–14].

This systems-level stress becomes even further compli-

cated when one considers that Fe–S clusters and thiols are

used for a broad range of enzymatic and regulatory func-

tions throughout the cellular network [15,16,17�,18,19].

To decipher this response and understand how bacteria,

as an integrated system, sense and respond to NO�, a

quantitative understanding of intracellular NO� reactivity

is required. NO� has many available reaction paths upon

entering a cell, and the biological outcome of NO�

exposure, whether it is continued growth, bacteriostasis,

expression of virulence factors, transition to an antibiotic-

tolerant state and/or cell death [17�,20–22], is governed by

a complex, kinetic competition. Quantitative knowledge

of this competition and the factors that control it will

reveal novel targets within the NO� response network for

the discovery and development of therapeutics that

synergize with host-derived NO�.

Because of the complexity of the competition for NO�

among biomolecules, mathematical models are required

to quantitatively analyze and understand data from NO�-
stressed environments [13,14,23,24��]. Beyond data

interpretation, these models enable identification of

emergent properties of the NO� response network and

formulation of testable predictions concerning the impact

of genetic and environmental perturbations. Here, we

summarize evidence that suggests quantitative modeling

will facilitate the discovery and development of NO�-
based antibiotics, review the current state of NO�models

along with their contributions to the present understand-

ing of NO� stress, and reflect upon the future prospects of

quantitative modeling to enhance the study of systems-

level stresses from not only NO�, but other broadly

reactive antimicrobials as well, such as H2O2.

NO� detoxification and repair systems are prevalent

virulence factors

The ability to withstand NO� stress has been linked to

the virulence of an impressive number of pathogens,

several of which are presented in Table 1. Notably, in

S. Typhimurium, Stevanin and colleagues found that a

mutant defective in NO� dioxygenase (Dhmp) exhibited

reduced survival in human macrophages, and that the

effect was eliminated upon treatment with an inhibitor of
www.sciencedirect.com
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Table 1

Pathogens for which NO� detoxification or repair has been identified as a virulence factor

Pathogen Gene(s) Description Ref

E. coli (enterohemorrhagic) norV Strains harboring an inactive norV gene (norVs) exhibited reduced survival in

murine macrophages.

[4]

E. coli (uropathogenic) hmp Isolates from patients with urinary tract infection had increased hmp

expression, and Dhmp mutants were outcompeted by the wild-type in a

mouse infection model.

[78]

M. tuberculosis mpa, pafA,

uvrB, dlaT

Mutants deficient in proteasome components (mpa or pafA) [3��] or

nucleotide excision repair (uvrB) [31] exhibited attenuated virulence in mice.

[3��,31]

N. meningitides cycP, norB Mutants lacking cytochrome c0 (cycP) or NO� reductase (norB) exhibited

reduced survival in human macrophages and human nasopharyngeal

mucosa organ cultures.

[6]

P. aeruginosa norCBD A mutant deficient in NO� reductase (norCBD) exhibited reduced viability in

murine macrophages.

[8]

S. Typhimurium hmp, xth,

nfo, ytfE

Mutants lacking hmp exhibited reduced survival in human macrophages [25]

and attenuated virulence in mice [26]. Mutations in base excision repair (xth

and nfo) [32�] and Fe–S assembly (ytfE) [7] both caused attenuated virulence

in mice.

[7,25,26,32�]

S. aureus hmp Mutants deficient in hmp exhibited attenuated virulence in mice. [79]

V. cholerae hmpA Mutants lacking hmpA were outcompeted in a mouse intestine colonization

assay.

[5]

Y. pestis hmp A mutation in hmp resulted in longer incubation times and attenuated

virulence in rats.

[30]
inducible nitric oxide synthase (iNOS) [25]. More

recently, this effect was corroborated in vivo, where Dhmp
S. Typhimurium had attenuated virulence in mice, and

iNOS inhibition restored virulence [26]. In EHEC, a

genomic study of clinical isolates found that the presence

of a functional norV gene, which encodes NO� reductase,

correlated with an increased frequency of hemolytic-

uremic syndrome (HUS) [27]. This connection was sub-

stantiated by a study demonstrating that EHEC posses-

sing an inactive norV gene exhibited reduced survival in

mouse macrophages compared to those with an active

norV [4]. Recently, the genome of the EHEC strain

responsible for the 2011 outbreak in Germany, which

resulted in the highest incidence of HUS on record [28],

was found to contain a functional norV [29], lending even

further support for the previous genomic study. For

Yersinia pestis, a microarray analysis of a model rat in-

fection identified hmp expression to be significantly up-

regulated, and subsequent experiments revealed that a

Dhmp mutant exhibited attenuated virulence [30].

Beyond NO� detoxification, microbial repair systems

have also been found to be important for resisting NO�

stress and were shown to contribute to virulence. A

transposon screen in M. tuberculosis found that mutations

in proteasome components (mpa and pafA) and a nucleo-

tide excision repair gene (uvrB) increased killing by NO�

produced from acidified nitrite in vitro, and reduced

virulence in mouse infection models [3��,31]. In S. Typhi-

murium, Richardson and colleagues found that base

excision repair mutants (DxthDnfo) had attenuated viru-

lence in mice, which was fully restored upon adminis-

tration of an iNOS inhibitor [32�]. These and related

studies support a role for NO� and its derivatives as key

mediators of host defense, and suggest that targeting the
www.sciencedirect.com 
NO� defenses of pathogens may be an effective way to

inhibit infection [33].

Therapeutic potential of NO�-based antibiotics

Several studies have found chemical inhibitors of the

NO� response network that increase the sensitivity of

pathogens to NO� [3��,33,34��]. Two chemical inhibitors

were shown to block activity of the M. tuberculosis protea-

some, and successfully reproduced the NO�-sensitive

phenotype of proteasome-deficient mutants [3��]. Hel-

mick and colleagues found that imidazoles could inhibit

NO� dioxygenase in vitro, and whole-cell NO� detoxifi-

cation in Staphylococcus aureus and E. coli cultures, though

the effects were far less pronounced in E. coli due to the

poor Gram-negative membrane permeability of imida-

zoles [33]. By performing a screen to identify inhibitors of

DlaT, an enzyme important for M. tuberculosis to tolerate

NO�-stress, Bryk and colleagues discovered that rhoda-

nines enhance killing of non-replicating M. tuberculosis
treated with NO� by several orders of magnitude [34��].
Further, D157070 (DlaT inhibitor) reduced M. tubercu-
losis viability in murine bone-marrow macrophages.

These studies demonstrate the potential of targeting

the NO� response network for the discovery of novel

antibiotics, and suggest that a deeper understanding of

NO� stress will reveal additional therapeutic strategies

for investigation, since all targets are not equally acces-

sible, as demonstrated with imidazoles and E. coli [33]. It

is also worth noting that, in addition to potentiating

immune-derived NO�, chemicals that target the NO�

response network would prove useful for therapies that

directly administer exogenous NO� to infection sites.

Direct administration techniques have been garnering

attention in recent years, due to the ability of NO� to
Current Opinion in Microbiology 2014, 19:16–24
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Figure 1
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Biochemical reaction network of NO� in E. coli. The diagram illustrates several key pathways involved in NO� metabolism. Reactions are grouped into

categories of NO� detoxification, Fe–S nitrosylation and repair, DNA deamination, and thiol S-nitrosation and denitrosation. Enzymes catalyzing a

reaction are shown in bold italics next to the reaction arrow. Enzyme abbreviations: NorV, NO� reductase; Hmp, NO� dioxygenase; NrfA, formate-

dependent nitrite reductase; GS-FDH, glutathione-dependent formaldehyde dehydrogenase; Gor, glutathione reductase; IscSUA, Fe–S cluster

assembly system; HscBA, Fe–S assembly chaperone. Metabolite abbreviations: GSH, glutathione; GS�, glutathionyl radical; GSNO, S-

nitrosoglutathione; GSSG, glutathione disulfide; dA, deoxyadenosine; dG, deoxyguanosine; dC, deoxycytidine; dI, deoxyinosine; dX,

deoxyxanthosine; dU, deoxyuridine; P([2Fe–2S]), protein-bound [2Fe–2S] cluster; P([4Fe–4S]), protein-bound [4Fe–4S] cluster; P(DNIC), protein-bound

dinitrosyl-iron complex; P(RRE), protein-bound Roussins’ red ester; DNIC(Cys)2, L-cysteine-bound dinitrosyl-iron complex; Papo, apo-protein (lacking

Fe–S cluster); Trxred, reduced thioredoxin; Trxox, oxidized thioredoxin; Fdxred, reduced ferredoxin; Fdxox, oxidized ferredoxin.
eliminate antibiotic resistant pathogens [35–38], and

numerous delivery mechanisms, including nanoparticles

[35,39], probiotic patches [37], and dendrimers [38], have

been explored. Several excellent reviews on the topic

have recently been published [40�,41,42], so here we will

only highlight an important design constraint. Specifi-

cally, the delivery method must achieve NO� concen-

trations high enough to be antibacterial but low enough

to remain non-toxic to eukaryotic cells. This therapeutic

window can be as small as five-fold [41], thereby pre-

senting a significant challenge for direct delivery

methods. One way to relieve this constraint is to couple

direct delivery with agents that increase the sensitivity of

pathogens to NO�, effectively expanding the therapeutic

window.
Current Opinion in Microbiology 2014, 19:16–24 
NO� elicits a complex, systems-level stress response

A comprehensive, quantitative understanding of NO�

stress has been elusive due to the reactivity of NO� and

its derivatives with a wide range of biomolecules

[1��,9�,10,12], and the depth to which these perturbations

propagate through cellular networks. This complexity is

best illustrated by the findings of transcriptomic

[7,17�,19,43–47], proteomic [15,18], and metabolomic

[48�,49] studies, which have collectively demonstrated

diverse, systems-wide responses to NO�. Hyduke and

colleagues conducted a DNA microarray analysis of

NO�-stressed E. coli, and found that 709 genes were

significantly perturbed, affecting a diverse range of cellular

functions, including branched-chain amino acid synthesis,

respiration, Fe–S assembly, and energy metabolism [17�].
www.sciencedirect.com
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This study also included a chemoinformatic analysis of the

E. coli proteome, wherein 554 proteins were identified as

potential RNS targets based on the presence of possible

NO�-reactive features (such as Fe–S clusters, heme groups,

or reactive thiol motifs). A transcriptomic study of anaero-

bically grown E. coli found that approximately 4% of the

genome (173 genes) exhibited a significant change in

expression upon NO� treatment [43]. Again, the perturbed

genes spanned a diversity of functions beyond NO� detox-

ification, including DNA metabolism, cofactor and pros-

thetic group synthesis, fatty acid metabolism, cell structure

maintenance, metal ion and multidrug transport, purine

and pyrimidine synthesis, and energy metabolism. The

transcriptome of oral pathogen Porphyromonas gingivalis
was measured following NO� exposure, and it too demon-

strated an expansive, systems-level response where

expression of approximately 19% of its genome (380 genes)

was significantly perturbed [44]. Although the majority of

the affected genes were of unknown function, those associ-

ated with energy metabolism, translation, and regulatory

functions were found to be altered by NO�. A recent

metabolomic study of NO�-treated V. cholerae found exten-

sive metabolic distress, as demonstrated by an accumu-

lation of upper glycolytic metabolites, impairment of

arginine synthesis, and accumulation of citrate, thereby

suggesting TCA cycle dysfunction [48�]. Similarly, Auger

and colleagues studied NO�-stressed Pseudomonas fluores-
cens and observed obstruction of the TCA cycle [49].

Proteomic analyses have also revealed systems-level per-

turbations by NO�; for example, Rhee and colleagues

measured S-nitrosation of M. tuberculosis proteins by acid-

ified nitrite-derived or macrophage-derived NO�, and

found 29 enzymes whose functions included amino acid

biosynthesis, energy metabolism, antioxidant defense,

heat shock response, RNA polymerase, and lipid metab-

olism to be nitrosation targets [15]. Analysis of S-nitrosation

in E. coli revealed some similarities, as well as novel targets,

including a subunit of pyruvate dehydrogenase [18]. These

studies demonstrate the extent to which NO� perturbs

numerous facets of bacterial physiology, and highlight the

challenges associated with gaining a complete understand-

ing of how a pathogen, as an integrated system, responds to

NO�.

Quantitative modeling of NO� stress

On a molecular level, the complex bacterial responses to

NO� all originate from the NO� biochemical reaction

network. Therefore, a deeper understanding of NO�

stress must begin with a quantitative examination of

intracellular NO� dynamics. The broad reactivity of

NO� and derived RNS, culminating in the breadth of

physiological perturbations identified by -omics studies,

underscores the need for a quantitative, mathematical

approach to deconvolute the effects of NO� stress and the

ensuing microbial response. Furthermore, the dynamics

of these processes span multiple time scales, ranging from

fractions of a second (spontaneous chemical reactions) to
www.sciencedirect.com 
minutes (regulatory responses), thus requiring a compu-

tational approach for their integration. The need for a

model-based approach to quantitatively study the com-

plex reaction network of NO� in biological systems has

motivated the construction of kinetic models to simulate

the NO� biochemical network and gain insight into its

biological roles.

Initial models to examine NO� stress in biological systems

Initial attempts to model NO� biochemical reaction net-

works were largely motivated by a desire to understand its

role in mammalian signaling. Lancaster constructed a

kinetic model of NO� chemistry accounting for the oxi-

dation, nitration, and nitrosation reaction types governing

the fate of NO� and its reactive intermediates, and was

able to make predictions regarding the relative import-

ance of each pathway under different biological con-

ditions (e.g. inflammatory and non-inflammatory levels

of NO� production) [13]. This model was reformulated by

Lim and colleagues to describe intracellular NO� chem-

istry of inflamed tissue at steady-state, and was expanded

to include additional antioxidants, amino acids, and lipid-

phase reactions [14]. Simulations provided valuable infor-

mation on approximate concentrations of RNS that are

generally too unstable and/or scarce to measure exper-

imentally, as well as their major intracellular sinks [14].

Bagci and colleagues used mathematical modeling to

explore the participation of NO� in apoptosis by integrat-

ing an NO� chemical network with a mitochondrial

apoptotic signaling network, thus providing quantitative

insight into the pro-apoptotic and anti-apoptotic activity

of NO� [23]. Though these methods laid the foundation

for the quantitative study of NO� in biological systems,

little consideration was given to cellular responses to

NO�, such as repair of damaged biomolecules and regu-

latory responses, which we have recently found to be

crucial in simulating the dynamics of NO� stress in

microbes [24��].

Recent advances in model-driven analyses of microbial NO�

stress

Recent work in our laboratory has demonstrated the

feasibility and utility of a model-based approach in study-

ing NO� stress in a microbial system [24��]. Drawing upon

existing kinetic models and the available body of litera-

ture, a comprehensive kinetic model of NO� biochem-

istry in E. coli was constructed and experimentally

validated. The model encompassed processes such as

damage and repair of Fe–S clusters, DNA, and thiols,

as well as enzymatic NO� detoxification, autoxidation,

and reversible inhibition of respiratory cytochromes.

Model simulations exhibited excellent predictive

accuracy with regard to major system perturbations, such

as the deletion of hmp, which encodes the primary aerobic

NO� detoxification system in E. coli. In addition, para-

metric analysis identified the rate of NO� delivery to the

system as a control parameter having strong influence on
Current Opinion in Microbiology 2014, 19:16–24
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the distribution of NO� consumption, which was con-

firmed experimentally. Finally, the model was found to

accurately capture NO� dynamics under microaerobic O2

concentrations, and successfully predict the importance

of the major aerobic (Hmp) and anaerobic (NorV) detox-

ification systems in this medically important regime.

Potential of quantitative modeling to transform the study of

NO� stress in bacteria

As discussed above, bacteria mount a systems-level

response to NO� that spans energy metabolism, amino

acid biosynthesis, translation, transcription, respiration,

DNA metabolism, protein cofactor synthesis, and direct

detoxification [1��]. Quantitative modeling offers a means

to interpret NO� responses and investigate their under-

lying architecture. For example, network analysis tech-

niques, such as parameter variation [24��] or metabolic

control analysis [50], can be used to identify species,

pathways, or other network components that significantly

alter the NO� distribution upon perturbation. In this way,

emergent systems properties of the NO� stress response

can be discovered, painting a more complete picture of

the complex network, and offering novel therapeutic

targets. In addition, quantitative models provide an excel-

lent framework to integrate diverse types of data, such as

metabolite, transcript, and protein levels, since explicit

variables for concentrations of cellular components are

used. Further, a rigorously constructed model represents

the current knowledgebase, and observed phenomena

that disagree with simulations represent a knowledge

gap to be filled. For example, a screen may identify a

novel gene or chemical that modifies how a bacterium

processes NO�, resulting in an unexplained NO�

dynamic. To understand the basis of such novel pheno-

types, analyses can be performed to identify parameters

whose modulation reconciles simulations with exper-

iments. These model adjustments provide readily testa-

ble hypotheses, such as altered gene expression or protein

degradation, to explain the mechanism by which a

mutation or chemical perturbs the NO� response net-

work.
Table 2

Pathogens for which H2O2 detoxification has been identified as a viru

Pathogen Gene(s) 

E. faecalis tpx, npr, ahp Mutants lacking thiol peroxida

model. Triple mutants lacking 

reductase (ahp) were more sig

H. pylori katA, kapA Mutants lacking katA and kap

M. tuberculosis katG Mutations in katG decreased p

monocytes in vitro [54].

S. Typhimurium katE, katG,

katN, ahpC,

tsaA

Inactivation of all five catalase 

H2O2 and decreased survival 

S. aureus katA, ahpC Mutations in katA and ahpC dec

S. pyogenes gpoA S. pyogenes requires glutathio

models.
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Challenges facing quantitative modeling of NO� stress

Although model-based approaches to study NO� stress

offer numerous benefits, they are all inherently limited by

the availability of kinetic data and knowledge of the

system architecture, such as the repertoire of NO� detox-

ification enzymes present. For microbes where this infor-

mation is scarce, coarse-grained models, where reaction

pathways and parameters have been lumped together, can

be trained on experimental data and used for quantitative

analyses, until more detailed information becomes avail-

able. Another challenge is related to rapid quantification

of unstable, short-lived intermediates that often exist in

trace quantities, such as N2O3 and NO2
� [14]. The lack of

precise measurements of these species prevents direct

validation of those components in the model, and there-

fore conclusions based on simulation of those species

should be handled with caution. One approach to recon-

cile the lack of a direct measurement, however, is to use a

reliable proxy, such as a stable and measureable down-

stream product. Overall, these challenges limit the

accuracy of quantitative models of NO� stress, but it is

important to note that failure of a rigorously constructed

model to capture a phenotypic response represents an

opportunity to discover novel biology not contained

within the available knowledgebase.

Beyond NO�

The broad reactivity of NO� makes quantitative mod-

eling an attractive tool for studying its systems-level

effects on bacteria. This quality of NO� is mirrored in

other immune antimicrobials, such as H2O2 [51]. The

importance of H2O2 to immunity has also been sup-

ported by the many pathogens that require H2O2

detoxification systems to establish or sustain an infec-

tion, such as S. Typhimurium [52], M. tuberculosis
[53,54], S. aureus [55], Helicobacter pylori [56], Strepto-
coccus pyogenes [57], and Enterococcus faecalis [58] (Table

2). In phagocytic cells, H2O2 is derived from the dis-

mutation of O2
�� that is produced by NADPH oxidase

[59], and readily diffuses into bacterial cells [60] to
lence factor

Description Ref

se (tpx) have attenuated virulence in a mouse peritonitis

Tpx, NADH peroxidase (npr), and alkyl hydroperoxide

nificantly attenuated.

[58]

A were less able to sustain long-term infection in mice. [56]

ersistence within infected mice [53] and human [53,54]

and hydroperoxidase genes resulted in high sensitivity to

within murine macrophages.

[52]

reased ability to colonize the nasal cavities of cotton rats. [55]

ne peroxidase (GpoA) for virulence in several mouse [57]

www.sciencedirect.com
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Figure 2
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Biochemical reaction network of H2O2 in E. coli. The diagram highlights the complexity of the intracellular H2O2 reaction network. Reactions are

grouped into categories of antioxidant enzymes, antioxidant metabolites, oxidative DNA damage, and oxidative protein damage. Enzyme

abbreviations: Cat, catalase; Ahp, alkyl hydroperoxidase; Msr, methionine sulfoxide reductase; TrxR, thioredoxin reductase; Gor, glutathione

reductase. Metabolite abbreviations: R-COCOOH, generic a-keto acid; R-COOH, carboxylic acid; Metsox, L-methionine-S-oxide; SSB, DNA single

strand break; DSB, DNA double strand break; dG, deoxyguanosine; 8-OHdG, 8-hydroxy-2-deoxyguanosine; 8-oxodG, 8-oxo-7,8-dihydro-20-

deoxyguanosine; Trxred, reduced thioredoxin; Trxox, oxidized thioredoxin; GSH, reduced glutathione; GSSG, glutathione disulfide; P([4Fe–4S]), protein

with [4Fe–4S] cluster; P([3Fe–4S]), damaged protein with [3Fe–4S] cluster; P(Cys-CH2-SH), protein-bound L-cysteine; –SOH, sulfenic acid; –SO2H,

sulfinic acid; –SO3H, sulfonic acid; P(Pro), protein-bound L-proline; P(Arg), protein-bound L-arginine; P(Lys), protein-bound L-lysine; P(glut-semi),

protein-bound glutamic semialdehyde; P(glut-amino), protein-bound aminoadipic semialdehyde.
react with cysteine [61] and methionine [62,63] resi-

dues, Fe–S clusters [64], transition metals [65], and a-

keto acids [66,67], or undergo enzymatic detoxification

by catalases [68], and hydroperoxidases [69] (Figure 2).

H2O2 can also be reduced by Fe2+ to form the stronger

oxidant, HO�, which reacts with most biomolecules at

diffusion-limited rates [70]. Given this broad reactivity,

it is not surprising that transcriptomic studies have

shown that H2O2 treatment results in systems-level

changes in the expression of genes involved in DNA

repair, virulence, membrane function, metabolism, and

peroxide detoxification [71–74].

The complexity of the H2O2 biochemical reaction net-

work suggests that quantitative modeling could provide a

deeper understanding of how bacteria sense and respond
www.sciencedirect.com 
to H2O2 as an integrated system. Currently, the best

models of H2O2 biochemistry are specific to mammalian

systems due to its importance as a cellular signaling

molecule and implication in a number of diseases

[75�,76,77]. These models have included H2O2 elimin-

ation by the antioxidants glutathione and thioredoxin,

enzymes catalase, glutathione peroxidase, glutathione

reductase, glutaredoxin, and peroxiredoxin, as well as

processing of oxidized protein thiols [75�,76,77], but

are incomplete due to the lack of reactions describing

damage and repair of many biomolecules and the exclu-

sion of transcriptional regulation. Analogous to NO�

stress, quantitative modeling has the potential to provide

a deeper understanding of H2O2 stress, and thereby

illuminate therapeutic targets to sensitize pathogens to

oxidative immune attack.
Current Opinion in Microbiology 2014, 19:16–24



22 Novel technologies in microbiology
Conclusion
NO� is an important immune antimicrobial that produces

a systems-level stress that is difficult to understand quan-

titatively without the use of mathematical models. These

models offer utilities far beyond data interpretation, such

as a platform to investigate systems-level control of NO�

metabolism, and an ability to mechanistically dissect

novel phenotypes of the NO� response network. Recent

advances in this area include a detailed model of NO�

stress in E. coli [24��], which led to the identification of an

emergent property of the NO� response network, and

increased understanding of NO� stress under the physio-

logically relevant microaerobic regime. While important

knowledge can be gained through analysis and expansion

of this model, it can also serve as a template to develop

models for less well-characterized bacteria, which is a

necessary step to transform quantitative modeling into a

common practice for investigations of stress caused by

NO� and other broadly reactive antimicrobials, such as

H2O2.
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