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Integrative analysis of human omics data using
biomolecular networks

Jonathan L. Robinson®® and Jens Nielsen*2°°

High-throughput '-omics’ technologies have given rise to an increasing abundance of genome-scale
data detailing human biology at the molecular level. Although these datasets have already made
substantial contributions to a more comprehensive understanding of human physiology and diseases,
their interpretation becomes increasingly cryptic and nontrivial as they continue to expand in size and
complexity. Systems biology networks offer a scaffold upon which omics data can be integrated,
facilitating the extraction of new and physiologically relevant information from the data. Two of the
most prevalent networks that have been used for such integrative analyses of omics data are genome-
scale metabolic models (GEMs) and protein—protein interaction (PPI) networks, both of which have
demonstrated success among many different omics and sample types. This integrative approach seeks
to unite 'top-down’ omics data with ‘bottom-up’ biological networks in a synergistic fashion that draws
on the strengths of both strategies. As the volume and resolution of high-throughput omics data
continue to grow, integrative network-based analyses are expected to play an increasingly important

www.rsc.org/molecularbiosystems role in their interpretation.
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Introduction

The development and advancement of high-throughput trans-
criptomic, metabolomic, proteomic, and other genome-wide
‘-omic’ profiling technologies have revolutionized the exploration
of biological systems."” The highly parallelized nature of these
methods enables the rapid quantification of molecular-level
phenomena spanning the whole cell or tissue, thereby providing

Jens Nielsen has a PhD in Bio-
chemical Engineering from the
Danish Technical University, where
he was appointed as full Professor
in 1998, and founded the Center for
Microbial Biotechnology. In 2008
he was recruited to Chalmers
University of Technology, Sweden,
where he was founding Head
of the Department of Biology
and Biological Engineering, and
currently directs a research group
of over 50 people. Jens Nielsen has
published more than 550 papers
that have received over 35000 citations, and is a member of the
National Academy of Engineering in the USA, the Royal Swedish
Academy of Sciences, and the Royal Danish Academy of Science
and Letters.

1

Jens Nielsen

Mol. BioSyst.


http://crossmark.crossref.org/dialog/?doi=10.1039/c6mb00476h&domain=pdf&date_stamp=2016-08-09
http://dx.doi.org/10.1039/c6mb00476h
http://pubs.rsc.org/en/journals/journal/MB

Published on 04 August 2016. Downloaded by Chalmers Tekniska Hogskola on 11/08/2016 09:53:04.

Review

a holistic description of a system, in contrast to the reductionist
view that is characteristic of more traditional molecular-scale
measurements.>* An increased breadth and depth in the infor-
mation generated by these approaches is helping to elucidate the
human genotype-phenotype relationship, an extensive under-
standing of which is critical to drive the paradigm shift in
healthcare toward personalized medicine that has been promised
with the advancement of omics technologies.”™® Interestingly,
the time- and cost-efficiency of generating high-throughput
omics datasets have progressed to such an extent that the sub-
sequent processing and analysis of the data are more frequently
becoming the rate-limiting step.™'®'" It is therefore critical to
focus efforts on the development of computational methods
to accurately and efficiently interpret increasingly large and
complex omics datasets. ">

An intuitive approach when faced with large datasets is the
use of statistical methods, such as clustering, enrichment, or
correlation analyses, as they can be useful in reducing the
dimensionality of the data to identify patterns or anomalous
behavior, which are often features of biological interest.**'*
While many of these techniques have demonstrated success in
the extraction of biologically relevant information from omics
datasets, as well as the integration of multiple data types, they
are inherently naive to the underlying biology of the system
from which the data originated. This tends to yield a higher
frequency of false-positives since the conclusions are drawn in
the absence of known biological constraints, and they do not
provide a mechanistic description (i.e., an explanation of how
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the individual components and processes of a system interact to
give rise to biological phenomena) of the results obtained.">*®
In order to link the data to the underlying biology and exploit the
existing knowledgebase, omics data can advantageously be
integrated with biological networks.

Systems biology networks represent the physical and/or
chemical relationships between the individual components that
comprise a biological system.'**° These networks can be repre-
sented in a mathematical form and provide a scaffold upon
which genome-wide omics data can be mapped, enhancing the
data with the connectivity information encoded within the net-
work architecture (Fig. 1)."%*

Two of the most common and successful network types that
have been used for analyzing human omics datasets are genome-
scale metabolic models (GEMs) and protein-protein interaction
(PPI) networks. Additional networks, such as signaling networks
and gene-protein or gene-gene interaction networks, have also
been shown to aid in the interpretation of omics data,”>** but
are beyond the scope of this review. GEMs are a mathematical
representation of all known biochemical reactions and their
associated enzymes and encoding genes that comprise the
metabolic functionality of a cell.>**> The combination of gene,
enzyme, metabolite, and reaction information allows for the
mapping and integration of diverse omics datatypes with
GEMs.>'7?! Furthermore, the extensive knowledgebase upon
which GEMs are constructed, in addition to their highly curated
nature, gives them an advantage of improved accuracy and a
stronger connection to the governing biological phenomena

Network-
integrated data

Al SR IV el BN

m/z

v
/
1

Ao M

I iy

breadth & depth of information extracted

Fig. 1 The integration of omics data with biological networks enriches the information obtained. Moving from left to right, the panels represent an
increase in the breadth and depth of information that can be extracted from a dataset. Left panel: Direct, targeted measurements of the human system
typically provide low-dimensional data with very specific and narrow information content. Center panel: High-throughput omics profiling methods
enable the acquisition of extensive quantities of molecular-level data in a rapid and increasingly cost-effective manner, but are inherently naive to the
underlying biological mechanisms. Right panel: Systems biology networks such as GEMs and PPIs can be used to interpret omics datasets in the context
of the governing metabolic processes and molecular interactions, enriching the information that is extracted, and helping to bridge the gap from
genotype to phenotype.
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compared to other network types.'”***” PPI networks are experi-
mentally generated maps detailing the interactions between
different proteins in a system, and serve as an excellent comple-
ment to GEMs because they include many interactions that could
not be inferred based on the existing knowledge such as protein
class or function.”®*® Although PPI networks can possess a
number of false-positive interactions, and the biological meaning
of an interaction can be ambiguous, these networks are valuable
because they are experimentally generated, and are not limited to
the scope of metabolism.*>*" Furthermore, since experimental
constraints often limit the coverage of some omics measure-
ments (e.g., proteomics), the interaction information encoded
within PPI maps can be used to enable the analysis of proteins
that were experimentally inaccessible.>> We review here the latest
advancements in human omics profiling, as well as the construc-
tion of two systems biology network types, GEMs and PPIs, and
how they can be leveraged to perform integrative analyses of
human omics data. The accumulating body of high-throughput
omics data requires the use of a systematic framework to
interpret the data in the context of biomolecular networks,
thus enabling the extraction of novel and biologically relevant
information.

Human omics profiling

The continued progression of high-throughput, genome-wide
analytical techniques in the past decade has transformed
the manner in which biological systems can be studied.®
Advancements in techniques such as genome and mRNA
sequencing,***> protein mass spectrometry and immunohisto-
chemistry,>®*” and quantitative metabolomics®® have improved
the rate and quality at which biological data can be collected,
and are available at a decreasing cost. The increased efficiency
and accessibility of omics data are driving a paradigm shift
in modern medicine from symptom-centric evaluation to
personalized healthcare, where diagnoses and treatments are
informed by the unique omics profile of each patient.®*° Before
such a goal can be considered feasible, a more comprehensive
understanding of the molecular components that comprise
human biological systems, and how they behave as part of a
highly interconnected and dynamic network, is required.
Since the completion of the human genome project in 2003,
there have been an increasing number of concerted efforts to
elucidate the genotype-phenotype connection, and quantify
different layers of the involved biological networks using high-
throughput omics approaches.’®** Although a great deal of
information can be obtained from genomic sequences, they do
not reveal which genes are expressed in a specific context (e.g.,
tissue type, disease state, environment) or the dynamics of those
expression changes. Over a decade ago, studies began to profile
the transcriptomic response in different tissues,**** and
more recent efforts, such as the Human Protein Atlas (HPA),*®
Genotype-Tissue Expression (GTEx) project,"” and functional
annotation of the mammalian genome (FANTOM),*® have
collectively quantified the mRNA landscape in all major human
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tissues and organs.*® The HPA database (proteinatlas.org) con-
tains RNA sequencing (RNA-Seq) data spanning 32 different
human tissues and organs, as well as 45 cell lines, in addition
to their corresponding proteomic profiles.*® The GTEx portal
(gtexportal.org) offers RNA-Seq data for 8555 samples collected
from 544 donors, covering 53 tissues.”” Using cap analysis
gene expression (CAGE),”® transcriptomes were quantified for
573 human primary cell samples, 250 cancer cell lines, and
152 post-mortem tissue samples, and are available on the FANTOM
online resource (fantom.gsc.riken.jp).*® These and other human
transcriptome profiling efforts have been reviewed in greater detail
elsewhere.*

Quantification of the human proteome has also been an
ongoing project, for which profiling techniques such as immuno-
histochemistry*®*"*> and mass spectrometry>>”* have been
employed to characterize the tissue- and organ-specific proteome
for most parts of the body. Many additional datatypes, such as
metabolomics,**® lipidomics,””*® and interactomics,*® are
rapidly advancing in their quality, depth, and coverage of human
physiology. However, extracting useful information from these
datasets and connecting it to the underlying molecular biology is
not straightforward, as there are virtually infinite means by
which the data can be analyzed and interpreted, but very few
will yield novel biological insight.

The data-rich nature of the human omics field lends itself
naturally to inferential statistical analyses, such as hierarchical
clustering, principal component analysis (PCA), multiple factor
analysis, machine learning, canonical correlation analysis, gene set
analysis, and various combinations of these approaches.'*'**%%
These methods offer the advantage of requiring little or no prior
knowledge of the biological system, which can in itself provide
the benefit of an objective, unbiased approach.®" For example,
Fehrmann et al. conducted an extensive re-analysis of over 77 000
gene expression datasets spanning human, rat, and mouse, and
across many tissue types, disease states, and therapeutic perturba-
tions, upon which PCA was administered to identify a set of
principal components (PCs) that captured the different expression-
regulating factors.”> In addition to enabling the inference of
unknown gene functions based on similar patterns as known genes,
the PCs were used to correct expression data for non-genetic
differences, revealing a strong correlation of residual expression
with copy number variation, perturbations of which have been
implicated in a number of cancers.”® Although statistical-based
approaches constitute a powerful device for identifying patterns in
the data, their disconnection from the underlying biochemistry can
often lead to a relatively large frequency of false positives and
overlooked phenomena (false negatives). To more efficiently extract
information from these large omics datasets, the data must be
reconnected with the biochemical network(s) governing the system
upon which the measurement was conducted.

Genome-scale metabolic models

One type of biomolecular network that is commonly used to
facilitate the interpretation and extraction of information from
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Fig. 2 Human GEM construction and integration with omics data. (A) GEMs are reconstructed from online databases and primary literature detailing the
known or predicted reactions that comprise the metabolic network. Additional experimental data can be obtained to further refine and validate the
model architecture. The construction is often an iterative process, where feedback from model analyses informs further experimentation and contributes
to the existing knowledgebase. (B) Data obtained from omics methods, such as transcriptomic data, can be mapped onto a GEM via the encoded
gene-reaction associations. This projection yields subnetworks or reporter metabolites/reactions that demonstrate significantly coordinated behavior of

network components in the expression data.

omics datasets is the GEM. GEMs are mathematical representa-
tions of the complete network of biochemical reactions that
can occur within a cell, and are assembled from the existing
knowledgebase of the metabolites, reaction stoichiometry,
compartmentalization, and gene-enzyme associations that define
the metabolic network of that particular cell type or species
(Fig. 2A).17:6465

Since the first metabolic reconstruction in 1999 of Haemophilus
influenza,”® an increasingly large number of GEMs have been
generated for a diverse range of species spanning bacteria, viruses,
plants, and humans.>” Human GEMs differ from those of uni-
cellular organisms in that they are often constructed in a generic
form to include the metabolites and reactions present among all
organs and tissues, which cannot be represented by a single model
type due to different gene expression profiles.®” The initial generic
human GEMs were Recon1®® and the Edinburgh Human Meta-
bolic Network (EHMN),* assembled from biological data collected
over many decades from the primary literature, online databases,
and high-quality genome annotations. Currently, the latest and
most comprehensive generic human GEMs are the Human Meta-
bolic Reaction 2.0 (HMR2)*® and Recon2,”® which are the result of
updating previous versions with the current human biochemical
knowledgebase (from the literature and databases®®’'”?), and
from the merger with many other, often more context-specific,
models of human metabolism.”>”*””

The applications of GEMs are as diverse as the species for which
they have been constructed, ranging from metabolic engineering

Mol BioSyst.

for biofuel production to the identification of knowledge gaps in a
particular reaction pathway.'””® %" Approaches such as constraint-
based modeling, where mathematical bounds or relationships are
enforced upon the network based on experimental data (such as
nutrient uptake rates), are used to reduce the solution space to a
more physiologically relevant subregion.®" This technique can be
used for simulation approaches such as flux balance analysis (FBA),
where the depletion and generation of each metabolite are
balanced to provide a set of algebraic equations constraining
the fluxes. An optimization framework is then used to arrive at
an even further constrained or unique solution of reaction fluxes
through the network.*

Although simulations using GEMs have been beneficial in
guiding metabolic engineering efforts of bacteria and yeast,"””%”°
human GEMs possess substantial value in their network architecture
alone. The construction of GEMs represents a ‘bottom-up’ approach
in systems biology, where detailed knowledge of individual bio-
logical components and their interactions is assembled to form a
larger, consolidated system.>'>® This is in contrast to ‘top-down’
approaches, where a system is analyzed as a whole, often using high-
throughput omics techniques to quantify how different conditions
or perturbations impact different subsystems or individual compo-
nents of the network.>'>* An integrative approach seeks to bridge
the top-down (omics datasets) and bottom-up (GEMs) strategies in a
cooperative manner that exploits the strengths of both. In this way,
the data are interpreted through a mechanistic framework that is
firmly rooted to the underlying biochemistry.*"**

This journal is © The Royal Society of Chemistry 2016
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The structure of a GEM is comprised of metabolic, enzymatic,
and genetic layers, as well as their connectivity, enabling inte-
gration with diverse omics datatypes.’” A common integrative
approach is the use of context-specific omics data (i.e., originating
from a specific tissue type or disease state) to specialize a generic
human GEM, where reactions are removed or constrained to
generate a context-specific GEM.”**>"®” This procedure is highly
flexible, where aspects such as the type of omics data and
algorithm used to contextualize the GEM can be adapted accord-
ing to the focus or applications of the study. A number of
algorithms have been developed for this approach, including a
transcriptome-based method by Akesson et al.,*® Gene Inactivity
Moderated by Metabolism and Expression (GIMME),* Integrative
Metabolic Analysis Tool (iMAT),*® Metabolic Adjustment by
Differential Expression (MADE),*® Probabilistic Regulation of
Metabolism (PROM),”® and Integrative Network Inference for
Tissues (INIT).”* These and other approaches have been reviewed
in greater detail elsewhere.®”?* "4

Another means by which GEMs have been employed for
integrative analysis, which is often done in combination with
the context-specific reconstruction approach described above,
is to map the omics data onto a GEM to enrich the data with the
topological information encoded in the model architecture (e.g.,
metabolites participating in the same reaction, or enzymes cata-
lyzing reactions that share a common metabolite) (Fig. 2B).>>">
In this way, patterns emerge that may otherwise be too diffuse or
statistically unremarkable to detect in the raw (unmapped) omics
data, yielding novel network insights such as transcriptional or
metabolic regulatory circuits."®® Furthermore, this integrative
approach enables the use of incomplete datasets that do not
exhibit an exhaustive coverage at the genome scale, where the
connectivity information built into the GEM structure enables one
to infer the behavior of neighboring components for which direct
quantification was unavailable.”®

An extensive body of work has demonstrated success in
extracting new and valuable information from human omics data
through a GEM-based integrative analysis.”>*’*** For example,
Folger et al. integrated microarray data from 59 cancer cell lines
with the Reconl human metabolic network reconstruction to
generate a generic metabolic model of human cancer cells, and
a growth reaction was added to enable the prediction of gene
knockdowns that would perturb cancer cell proliferation.'®®
Model-predicted genes were validated with experimental gene
silencing data and with a set of human cancer genes for which
mutations had been implicated in oncogenesis. The use of an
integrated approach demonstrated improved performance over
the independent use of the transcriptomic data or the Reconl
model alone. In another study, Shlomi et al. investigated the
tissue specificity of human metabolism by mapping transcrip-
tomic and proteomic data from ten different tissues onto
Reconl, using an optimization framework that maximized the
agreement between predicted flux distributions and the corres-
ponding tissue-specific enzyme expression levels.®® Their use of a
biological network enabled the prediction of post-transcriptional
regulatory effects based on differences between calculated reaction
fluxes and enzyme expression levels, providing new information

This journal is © The Royal Society of Chemistry 2016
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that could not be obtained from standard gene expression analysis
approaches. Furthermore, the prediction of gene tissue-specificity
using the network-based approach identified a larger number
(three-fold greater) of gene-tissue associations, and with greater
accuracy than the standard gene set enrichment analyses.*

Agren and colleagues integrated expression data from the
HPA with the HMR human GEM using their INIT algorithm,
generating context-specific GEMs for 69 different healthy cell
types and 16 cancer types.”* These GEMs were validated through
comparison with measured protein abundances in different tissue
types reported in the BRENDA database,'®® and through compar-
ison of the liver-specific model with a previously-developed highly-
curated model of human hepatocytes (HepatoNet1).”> A comparison
of different context-specific GEMs enabled the prediction of
metabolic functions that were specific to cancer physiology,
many of which were associated with enzymes that were pre-
viously known and used as drug targets. A later work extended
and built upon this approach, generating personalized GEMs for
6 hepatocellular carcinoma patients from proteomic data,*®” and
11 cancer cell-line specific GEMs from RNA-Seq data.'®® These
cancer-specific GEMs were then compared with 83 healthy cell-
type GEMs to predict antimetabolites (drugs that are structurally
similar to metabolites) that would inhibit cancer growth without
perturbing normal cellular function. Many of the predicted
antimetabolites overlapped with existing cancer treatments,
and novel predictions were experimentally validated by demon-
strating attenuated growth of cancer cell lines."®”'%® Since their
antimetabolite prediction approach relied on the network con-
nectivity information encoded within the GEM, it was not
possible to extract this type of information using traditional
statistical-based methods alone, further illustrating the added
benefit of employing a network-based approach in the analysis
of omics data.

Recently, Gatto et al.’® performed an integrated analysis of
481 clear cell renal cell carcinoma (ccRCC) RNA-Seq datasets
from The Cancer Genome Atlas (TCGA) with HMR?2 to investi-
gate the cancer-specific metabolic program that they previously
identified®® to be unique from that of many other cancer types.
The investigation revealed a coordinated perturbation to glycos-
aminoglycan biosynthesis associated with metastatic ccRCC which
was not only confirmed at the protein level using immunohisto-
chemical staining of the ccRCC tissue, but was also sufficiently
detectable in urine and plasma to constitute a promising new
biomarker for non-invasive diagnosis of the disease.'®* These and
many other studies, which have been reviewed at length
elsewhere,'>'7:4965:109112 ynderscore the utility and flexibility
of employing GEMs in integrative analyses of high-throughput
human omics data.

Protein—protein interaction networks

Advancements in high-throughput genomic and transcriptomic
technologies have greatly accelerated our understanding of
biological systems at the gene-level, though it is ultimately the
encoded proteins that execute many of the biological functions
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that drive cellular behavior. Furthermore, the interactions affinity purification-mass spectrometry (AP-MS),** and fluores-
between proteins govern critical functions such as enzyme com-  cence resonance energy transfer (FRET),"** are reviewed in greater
plex formation, cellular signaling, allosteric regulation, and detail elsewhere.’>'®
post-translational processing of proteins (e.g:, folding, trafficking, There have been several high-throughput studies seeking to
degradation), and the disruption of such interactions has been experimentally map the human PPI network, which was recently
implicated in diseases ranging from cancer to asthma.**®''®  estimated to consist of approximately 130000 binary inter-
Given that the transcript levels do not necessarily correlate with — actions."* Mapping efforts began in 2005 when Stelzl et al.'*®
the abundance of their encoded proteins,"® the direct quantifi- and Rual et al'®® used a Y2H-based approach to quantify
cation of the proteome and/or its interactions (interactome) approximately 3200 and 2800 binary PPIs, respectively. A later
serves as an important complement to gene-centric data in study by Ewing and colleagues utilized a mass spectrometry-
systems biology studies. based approach to conduct a similar analysis of human PPIs,
Many assays have been developed to quantify PPIs, and can  resulting in ~6500 interactions between ~2200 proteins.™”
differ in aspects such as the type of information they yield, how More recently, Rolland et al. sought to generate a high-quality
well they scale to a larger library size, and their cost. One of the binary interaction map of the human proteome using a systematic
most common techniques used to detect interactions between approach to enable more complete coverage of the possible
proteins is the yeast two-hybrid (Y2H) assay, where the two interactome landscape.?® The resulting human PPI map, which
proteins are fused to different fragments of a transcription is the most comprehensive to date, included approximately
factor, and their interaction initiates the expression of a down- 14 000 interactions, which were more broadly distributed among
stream reporter gene (Fig. 3A).""7 It offers the advantage of the proteome, spanning regions that had been sparsely covered
scaling to high-throughput methods, but is restricted to the by previous studies.
subset of proteins that are able to enter the yeast nucleus.'® PPI networks serve as an excellent complement to GEMs
The membrane Y2H (MYTH) assay''® addresses the problem because they are experimentally derived, and often possess
of restricted protein location by enabling the detection of novel interactions that cannot be ascertained from reaction-
membrane-bound protein interactions through fusion to metabolite or gene-enzyme relationships alone. Generating the
split-ubiquitin,'*® though it prevents the detection of soluble network from experimental data is also advantageous in that
proteins. These and other protein interaction assay techniques, it is more objective, avoiding biases that could be introduced
such as mammalian protein-protein interaction trap (MAPPIT),"** by the current knowledge of protein interactions.”® Moreover,

A PPI network construction
protein-protein interaction screens binary PPI matrix PPI network
LUMIER <+——proteins —» Q oPPo
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Fig. 3 Human PPI network construction and integration with omics data. (A) PPI networks are generated experimentally, where many different binary
interaction screens can be used, such as Yeast Two-Hybrid (Y2H), Bimolecular Fluorescence Complementation (BiFC), and Luminescence-based
Mammalian Interactome Mapping (LUMIER). BD is the DNA-binding domain, AD is the activation domain, and N-FP and C-FP are the N- and C-terminal
fragments of a fluorescent protein. The results are arranged in a binary matrix indicating which pairs of proteins were found to interact, and can be
represented graphically where proteins are nodes, and edges connect the pairs of interacting proteins. (B) High-throughput data, such as quantitative
proteomics, can be integrated with PPIs to generate context-specific subnetworks that highlight groups of proteins or interactions that are significantly
associated with the particular condition or perturbation explored.
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PPI networks can, in principle, encompass all proteins compris-
ing a biological system, whereas GEMs are generally limited to
those involved in metabolic functions. Much like GEMs, PPI maps
can serve as a scaffold upon which high-throughput omics data
can be mapped for an integrative analysis, thus enriching the
information that can be extracted from the data (Fig. 3B).>"*%"3>
In an effort to determine mechanisms contributing to breast
cancer progression and metastasis, Chuang et al.'*® mapped
gene expression profiles obtained from primary breast tumors
to a human PPI network (containing PPI information from both
Stelzl et al.'®> and Rual et al.'*®), where transcriptomes were
classified according to whether metastasis was detected in a
follow-up evaluation of each patient. Subnetworks exhibiting
large metastatic-nonmetastatic differences were identified as
markers, and found to be enriched for functions such as
apoptosis, tissue remodeling, and cell proliferation—processes
implicated in cancer progression. Subnetwork markers exhibited
greater predictive accuracy and reproducibility across different
datasets compared to individual gene markers, demonstrating
the value added by using a network-based approach. Moreover,
many well-established breast cancer markers that were not
found to be significantly differentially expressed when using
traditional gene expression analyses were identified as members
of significant subnetwork markers.

A study by Nibbe et al. involved the integration of proteomic
data obtained from normal and colorectal cancer (CRC) tumor
tissue biopsies with a human PPI network, where significantly
involved proteins were used to “seed” the network and predict
important sub-networks based on their connectivity and proxi-
mity to neighboring proteins.** The authors went further to
map transcriptomic CRC data onto the proteome-informed PPI
subnetworks to identify candidates that exhibited significant
and synergistic differences between normal and tumor samples.
Several of the candidates were experimentally validated by
Western blot from tissue biopsies not included in the original
screening. Recently, Greene et al. generated 144 tissue- and cell
type-specific functional maps by integrating a massive collection
of human omics data (including, for example, 980 gene expres-
sion datasets) with PPI networks using a Bayesian approach, to
facilitate the understanding and prediction of tissue- and disease-
specific gene functions."® To validate the approach, the authors
experimentally assessed their predicted connection of 20 blood
vessel cell network neighbors with IL1B by measuring gene
expression in smooth muscle cells following IL-1§ treatment,
where 18 (90%) were confirmed to be among the top 500 genes
exhibiting increased expression.

Balbin et al. used a PPI network in an integrative analysis of
transcriptomic, proteomic, and phosphoproteomic data obtained
from non-small cell lung cancer (NSCLC) cell lines."** Through
the combination of a network pathway enrichment approach
(Signaling Pathway Impact Analysis algorithm; SPIA'*®), with PPI
data obtained from the STRING database,"** the authors were
able to investigate the changes in protein and transcript abun-
dance specifically connected to KRAS. Three of the four proteins
that they experimentally validated had not been explored pre-
viously in KRAS-dependent lung cancer."® In contrast, a naive
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analysis of the same data using traditional expression analyses
missed 30 of the 115 candidate proteins identified using the
integrated approach, and offered no insight into their specific
role in lung cancer or their connection to known oncogenes."*°
Collectively, these studies demonstrate the versatility and advan-
tages of using PPI networks in the integrative analyses of human
omics data, enabling the extraction of new and biologically-
relevant information that is otherwise inaccessible in the raw,
unmapped datasets.

Conclusions

The quality, coverage, and rate at which human omics datasets
are being generated are continuing to increase at a striking pace,
and offer great potential in advancing the prevention, diagnosis,
treatment, and understanding of human diseases.”®" Integrative
analysis of these high-throughput datasets with biomolecular
networks constitutes a promising approach that facilitates more
efficient extraction of physiologically relevant information.>*>84111
Systems biology networks such as GEMs and PPIs offer unique
and complementary advantages in interpreting human omics
data in the context of the underlying biology. Although the
scope of using human GEMs is generally limited to the meta-
bolic network they represent, they are highly curated due to the
wealth of information available on metabolism, and provide a
link between enzymes, metabolites, reactions, and genes.'®""*
PPI networks are prone to contain false-positives and can be
ambiguous regarding the mechanics or meaning of an inter-
action, but they are experimentally generated, require no prior
knowledge of the system, and can potentially span the entire
proteome.?%3%133

The capacity for biomolecular networks to systematically
process and interpret large datasets is critical to the realization
of personalized medicine.®'> Given the heterogeneity and com-
plexity with which diseases perturb human physiology, traditional
expression analyses of omics data are insufficient to decipher the
underlying cause(s) of system malfunction.">*® Network-based
approaches enable a holistic analysis that accounts for the inter-
actions among system components that comprise (or obscure) the
mechanism of disease progression.'*"'*® Furthermore, the con-
nectivity information within GEMs and PPIs facilitates the pre-
diction of potential targets for novel treatment options, or that of
biomarkers for early disease detection.*"'*®

Beyond GEMs and PPIs, the construction and application
of other networks, such as disorder-gene,"?” gene-gene,”® and
protein-DNA"®® networks have demonstrated success in extract-
ing mechanistic information from biological systems, and can
each offer a unique context to an omics dataset. Furthermore,
the integration of high-throughput data with a combination of
multiple different biological network types has the potential to
increase the dimensionality and breadth of information that can
be extracted, though the approach is nontrivial and will require
further development. Although single omics datasets possess a
wealth of information about a system, it is becoming increas-
ingly clear that multi-omics approaches, wherein multiple types
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of high-throughput omics assays are performed on the same
system, are necessary to sufficiently capture the high dimen-
sionality and complexity of biological systems.****** Biological
networks can serve as a core scaffold to facilitate the integration
of diverse omics data types, providing a central structure upon
which the different data are layered.'®'**' It is expected that
GEMs, PPIs, and other network types will play an increasingly
central role in the interpretation of high-throughput data as
human biological profiling studies continue to shift toward
more multi-omics-based strategies.
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