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L. Thomas Svensson4, Bernhard O. Palsson5,6,7, Adil Mardinoglu8,9, Lena Hansson4,10,  
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Genome-scale metabolic models (GEMs) are valuable tools to study metabolism and provide a scaffold for the 
integrative analysis of omics data. Researchers have developed increasingly comprehensive human GEMs, but 
the disconnect among different model sources and versions impedes further progress. We therefore integrated 
and extensively curated the most recent human metabolic models to construct a consensus GEM, Human1. We 
demonstrated the versatility of Human1 through the generation and analysis of cell- and tissue-specific models 
using transcriptomic, proteomic, and kinetic data. We also present an accompanying web portal, Metabolic Atlas 
(https://www.metabolicatlas.org/), which facilitates further exploration and visualization of Human1 content. 
Human1 was created using a version-controlled, open-source model development framework to enable community- 
driven curation and refinement. This framework allows Human1 to be an evolving shared resource for future studies 
of human health and disease.

INTRODUCTION
Human metabolism is an integral part of cellular function, and 
many health conditions such as obesity, diabetes, hypertension, heart 
disease, and cancer (1, 2) are associated with abnormal metabolic 
states. Several of these conditions can be diagnosed by screening for 
metabolite biomarkers in a patient’s blood or urine (3), and recent 
studies have explored targeting metabolic processes for disease 
treatment (4, 5).

Despite the importance of metabolism and advances allowing 
for simultaneous measurement of thousands of metabolites (6), 
understanding metabolism in a holistic manner in human cells re-
mains challenging. One reason for this difficulty is that the defining 
feature of metabolism is not the concentrations of biomolecules 
themselves (such as metabolites, mRNA, or proteins), but metabolic 
fluxes through reactions, for which concentrations can only be used 
as indirect proxies for biological activity (7). This challenge has 
been addressed by building genome-scale metabolic models (GEMs), 
which have been used, for instance, in industrial applications in-
volving Saccharomyces cerevisiae and Escherichia coli to understand 

metabolism, engineer new cellular objectives (such as biofuel pro-
duction), and increase product yield (8, 9).

Over the past 15 years, researchers have devoted a concerted 
effort to develop and improve such GEMs for human metabolism. 
This effort began in earnest with the development of Recon1 (10) 
and the Edinburgh Human Metabolic Network (EHMN) (11), which 
served as the starting point for two parallel model series: the Recon 
series (Recon1, 2, and 3D) (10, 12, 13) and the Human Metabolic 
Reaction series (HMR1 and 2) (14, 15). These two model lineages 
incorporate heavily from each other during updates (fig. S1) and 
have been used to investigate diseases that include dysbiosis, diabetes, 
fatty liver disease, and cancer (16–19). Nevertheless, several challenges 
remain in the development of a human GEM, including the use of 
nonstandard identifiers for genes, metabolites, and reactions; duplica-
tion of model components; propagation of errors from previous 
model iterations; effort divided among multiple model lineages; 
and model updates that are delayed, nontransparent, and difficult 
to coordinate among the scientific community.

Here, we present Human1, the first version of a unified human 
GEM lineage (Human-GEM), and Metabolic Atlas, its companion web 
portal. Human-GEM was developed by integrating and extensively 
curating the Recon and HMR model lineages. The entire development 
process was conducted systematically in a version-controlled Git 
repository to make all past and future changes publicly accessible 
and to facilitate collaboration with the larger research community. 
We demonstrate the versatility and predictive accuracy of Human1 
through an integrative analysis of transcriptomic data from 33 
tumors and 53 healthy tissues, a gene-essentiality investigation 
involving more than 620 different cell types, and the prediction 
of nutrient exchange and growth rates of NCI-60 cell lines using 
enzyme-constrained GEMs (ecGEMs) derived from Human1.

RESULTS
Human1 generation and curation
Our primary focus was to establish a systematically curated model 
of human metabolism that accurately represents the underlying 
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biology. We therefore leveraged the collective knowledge contained 
within existing human GEMs by integrating their information into 
a single resource. Components and information from HMR2, iHsa 
(20), and Recon3D were integrated and reconciled to yield a unified 
GEM consisting of 13,417 reactions, 10,138 metabolites (4164 unique), 
and 3625 genes (Fig. 1 and table S1).

Curation of the integrated model to generate Human1 involved 
the removal of 8185 duplicated reactions and 3215 duplicated me-
tabolites, revision of 2016 metabolite formulas, rebalancing of 3226 
reaction equations, correction of reversibility for 83 reactions, and 
the inactivation or removal of 576 reactions that were inconsistent 
(violated mass or energy conservation) or deemed unnecessary (ta-
bles S1 to S3). We also constructed a new generic human biomass 
reaction based on various tissue and cell composition data sources 
to facilitate flux simulations and other analyses relying on such a 
reaction (data files S1 and S2). All model changes were documented 
to provide justification and to ensure reproducibility. Furthermore, 
to ensure that these changes remained consistent with previous 
human GEM simulation studies, we repeated the infant growth 
simulation presented by Nilsson et al. (21) and found excellent 

agreement between their HMR2-based results and our Human1- 
based simulations (fig. S2).

The quality of Human1 was evaluated using Memote, a community- 
maintained framework for assessing GEMs with a standardized set 
of tests and metrics (22). In terms of consistency, Human1 exhibited 
excellent performance with 100% stoichiometric consistency, 99.4% 
mass-balanced reactions, and 98.2% charge-balanced reactions (fig. S3). 
This is a considerable improvement over the most recent GEM, 
Recon3D, which had 19.8% stoichiometric consistency and 94.2% 
mass-balanced and 95.8% charge-balanced reactions. Although the 
“model” version of Recon3D is fully stoichiometrically consistent 
and has a similar charge balance percentage (98.7%) as Human1, 
it has a lower percentage of mass-balanced reactions (97.3%) and 
contains 20% fewer total reactions and 33% fewer metabolites compared 
to Human1. The average Memote annotation score for metabolites, 
reactions, genes, and SBO (systems biology ontology) terms in 
Human1 was 66%; although this is a substantial improvement over 
previous models (46% for HMR2 and 25% for Recon3D), it indicates 
an area requiring further attention. We also used Memote to evaluate 
all 27 Human-GEM releases (versions) preceding Human1 to resolve 

Fig. 1. Overview of Human1 generation and curation. A simplified illustration of the key steps involved in the generation of Human1 from HMR2, Recon3D, and iHsa. 
The bottom of the diagram represents the ongoing open-source curation of Human1 using input from databases, literature, other models, and the scientific community. 
The four side panels provide further detail into selected Human1 features: extensive reaction mass and charge balancing to achieve 100% stoichiometric consistency, 
incorporation of new enzyme complex information, mapping model components to standard database identifiers, and version-controlled and open-source model 
curation framework. In the bar graphs in the upper left panel, “Balanced” reactions represent the number of mass-balanced reactions, “Consistent” metabolites are the 
number of stoichiometrically consistent metabolites, and “R3D model” is the model version of Recon3D.
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the effect of different curation processes on the various quality 
metrics (fig. S4, A to C).

A major advantage of GEMs is their ability to integrate different 
molecular datatypes to enable the interpretation of such data within 
the context of metabolism (23). We prioritized the curation and 
enhancement of gene-reaction associations for Human1 because 
such associations serve as an important link for the integration 
of multi-omics data. To this end, gene-reaction associations from 
HMR2, Recon3D, and iHsa were combined and integrated with 
enzyme complex information from Recon3D, iHsa, and the com-
prehensive resource of mammalian protein complexes database 
(CORUM) (24) to obtain gene-reaction rules for Human1. We also 
made available the transcript- and protein-reaction rules to facilitate 
direct integration of protein- or transcript-level data into the model, 
respectively (25). Furthermore, a key contribution of Recon3D was 
the association of protein structure information (such as 3D structure 
data) in a GEM-PRO data frame (13). We therefore regenerated the 
GEM-PRO data frame for Human1 to ensure that this same detailed 
protein information is also available for Human1.

An obstacle with existing human GEMs is their insufficient use 
of standard identifiers (such as KEGG, MetaCyc, and ChEBI) for 
many metabolites and reactions, thus impeding the retrieval of 
associated information from databases or the comparison of different 
models. To address this issue, we combined the available reaction 
and metabolite formulas, names, and identifiers in a semi-automated 
curation process using the MetaNetX reference database (26) to 
map 88.1% of reactions and 92.4% of metabolites to at least one 
standard identifier in Human1.

Other challenges facing human models are the ineffective com-
munication and dissemination of their construction or revision. 
Traditionally, GEMs have been provided as a static object accompa-
nying a publication, and thus, errors can remain without correction 
for years. On the basis of the approach applied for the Yeast8 GEM 
(27), we developed Human1 using a Git repository hosted on 
GitHub to establish a more systematic and community-driven 
development process. This configuration enables version control 
and tracking of all changes made to the model since its inception, 
accompanied by documentation such as commit messages and log 
files. The use of a public repository allows users to view or down-
load the curation history of Human1 and submit issues to suggest 
changes or highlight errors. Thus, new knowledge can be efficiently 
integrated in future updates of the model using a community- 
wide effort.

Collectively, these improvements yield a standardized model 
enabling simple and accurate integration with different databases or 
omics datasets. We observed that the implementation of Human1 in 
a version-controlled framework such as Git is necessary to address 
many of the reproducibility and transparency concerns associated 
with computational research (28, 29).

Metabolic Atlas
In parallel with the development of Human1, we developed Metabolic 
Atlas (www.metabolicatlas.org/), an online platform that enables 
interactive exploration of cell metabolism and convenient integration 
of omics data. Metabolic Atlas is an open-source reimplementation 
and complete redesign of its predecessor, the Human Metabolic 
Atlas (30).

Metabolic Atlas enables visualization of the complex metabolic 
network and interconnects model components (Fig. 2). It contains 

interactive two-dimensional (2D) maps at compartment and sub-
system levels, allowing the use of smaller, more focused maps that 
pertain to metabolic areas of interest. The manually curated 2D 
maps cover 6793 nontransport/nonexchange reactions (90%), 4027 
metabolites (97%), and 3316 genes (91%) present in Human1. 
These maps are integrated with transcriptomic data from the 
Human Protein Atlas (HPA) (31), upon which gene expression levels 
from 37 different tissue types can be overlaid. Users can also upload 
their own transcriptomic data to be visualized on the maps, and an 
expression comparison feature allows the overlaying of expression 
fold changes between two samples (such as different HPA tissues 
and/or user-uploaded data).

Selection of a component (gene, reaction, metabolite, subsystem) 
on any Metabolic Atlas map provides a descriptive summary on the 
sidebar, which includes a link to its complete information page with 
further details and links to external databases. Moreover, automatically 
generated 3D maps are available, which cover 100% of the Human1 
network. In addition to maps, Metabolic Atlas dynamically generates 
graphs of interaction partners for any given enzyme or metabolite 
in Human1, which show the connectivity to other metabolites and 
enzymes based on their associated reactions. These graphs can be 
expanded to include more distant interaction partners and are also 
integrated with HPA transcriptomic data.

Metabolic Atlas continues to serve as a repository for an increasing 
number of GEMs (more than 350), ranging from those of individual 
human tissues and tumors to S. cerevisiae and other model organisms 
for fungi or bacteria. These models are summarized in a searchable 
table including information such as organism name, condition, year 
of publication, and number of reactions, metabolites, and enzymes. 
Furthermore, the content of Human1 can be accessed programmat-
ically using the application programming interface (API) to retrieve, 
for example, all information associated with a given metabolite.

Metabolic Atlas provides a valuable resource and intuitive tool 
that complements the functionality of the Human1 model for 
studying metabolism. The coupling of Human1 and Metabolic 
Atlas enables valuable infrastructural support for future research in 
human health and disease.

Generation and comparison of healthy tissue– and  
tumor-specific models
To demonstrate the utility of Human1, we explored metabolic patterns 
across healthy tissues and primary cancers arising within those tissues. 
We performed GEM contextualization to construct tissue- and cancer- 
specific models because Human1 contains reactions across many 
human cell types and is thus not representative of any individual 
tissue or tumor type. The contextualization was performed using 
tINIT (32) based on gene expression levels from The Cancer Genome 
Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) data-
base (33) to construct 53 healthy tissue metabolic models and 33 
cancer metabolic models.

We first investigated the global similarity in the structure of the 
metabolic models by comparing which reactions were included in 
each model. We visualized relationships across the reaction struc-
tures of the 86 models using a 2D t-distributed stochastic neighbor 
embedding (tSNE) projection, which showed that each cancer 
type’s metabolic signature is more similar to the metabolism of its 
tissue of origin than to that of other cancer types (Fig. 3A and 
fig. S5). This phenomenon has also been observed when comparing 
gene expression data among different tissue and cancer types (34). 
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Several tissues and their associated tumors had markedly different 
metabolic capabilities than the other tissue models; these included 
the brain, liver, kidney, and tissues in the digestive system (stomach, 
colon, and rectum). This result highlights the role of these tissues as 
“metabolic specialists” as opposed to other human tissues.

We next focused on the GEMs of liver, liver cancer, blood, and 
blood cancer. A more detailed reaction structure comparison showed 
that liver and blood models (and their associated tumors) have 
distinct metabolic reaction structures and that, within liver models, 
cholangiocarcinoma (CHOL) was more distinct from healthy liver 
tissue, whereas hepatocellular carcinoma (LIHC) laid between the 
two states (Fig. 3B).

To further explore these differences, we investigated the meta-
bolic subsystem coverage and functional differences between liver 
tissue and liver cancers. We found a distinct loss of metabolic functions 
in the CHOL GEM, including a deficiency in metabolic reactions 
associated with the urea cycle, bile acid recycling, metabolism of 
other amino acids, phenylalanine metabolism, and glucocorticoid 
biosynthesis (Fig. 3C), leading to a loss of function in urea production, 
ornithine degradation, arginine and creatine synthesis, ammonia 
import and degradation, and other metabolic tasks (Fig. 3D). The 
exception was proline de novo synthesis, which was the only meta-
bolic task active in CHOL that was inactive in the other liver-related 
GEMs. This was supported at the mRNA level (visualized using 
Metabolic Atlas in fig. S6) and reflects previous studies that have 
shown increased proline synthesis and decreased proline degrada-
tion in other cancers in response to signaling through c-MYC and 
phosphatidylinositol 3-kinase (PI3K) oncogenes, where the disrup-

tion of such metabolic activity constitutes a potential therapeutic 
strategy (35, 36). These and other approaches targeting metabolic 
functions such as ammonia buildup may constitute beneficial areas 
of research for developing CHOL treatments, which currently suffers 
from a lack of targeted therapies (37).

The construction of healthy and cancer-specific GEMs allowed 
us to compare cancer metabolism to healthy metabolism in systems 
for which paired normal tissue was not collected along with cancer 
tissue. An example is the comparison of the metabolism of acute 
myeloid leukemia (LAML) to that of healthy blood. The LAML GEM 
was characterized by a large increase in metabolic function over 
healthy blood (Fig. 3, E and F), including processes such as gluco-
corticoid biosynthesis, fatty acid oxidation (fig. S7), glycosphingo-
lipid synthesis, and amino acid metabolism. This observation is 
consistent with previous studies showing that LAML relies on 
elevated fatty acid oxidation (38) and exhibits increased glyco-
sphingolipid biosynthesis (39), which is associated with resistance 
to chemotherapeutics (40).

The large gain of metabolic function in LAML provides a rich 
number of pathways to target, such as heme biosynthesis, which 
constitutes a potential target for the treatment of LAML (41, 42). 
Moreover, reduced coverage of a metabolic pathway in the disease- 
state GEM may indicate a less robust metabolic function that is 
more susceptible to therapeutic disruption. For example, the 
LAML GEM contained fewer reactions in the heme degradation 
subsystem compared to that of healthy blood, suggesting that 
targeting such activity could prove beneficial for treating LAML. Sup-
porting this observation, inhibition of oxidative heme degradation 

3D Viewer

GEM Browser DIO2 Interaction Partners

Fig. 2. Highlighted features provided by the Metabolic Atlas web portal. A collection of screen captures from Metabolic Atlas, illustrating key features such as 2D and 
3D metabolic network maps. A zoomed inset shows a subset of the endoplasmic reticulum compartment map, from which further information on components such as 
reactions, enzymes, or metabolites can be accessed in the GEM browser. Interaction partner graphs are dynamically generated for any given enzyme or metabolite in 
Human1, which show the connectivity to other metabolites and enzymes based on their associated reactions.
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has been demonstrated to be a promising treatment for myeloid 
leukemia (43).

Prediction of metabolic task-essential genes in human  
cell lines
Following the construction and analysis of context-specific GEMs 
derived from Human1, we performed additional analyses to validate 
the network topologies of such models. Gene-reaction associations 
encoded within GEMs enable predictions of how gene perturbations 
(such as deletions) affect metabolic functionality. A common approach 
involves the prediction of essential genes by determining which genes, 
when deleted in silico, sufficiently reduce or eliminate the function 
of a specified objective reaction, such as biomass production (44). 
This predicted set of essential genes can then be compared with 
experimental gene essentiality measurements to quantitatively evaluate 
model performance.

Genome-wide knockout screens have provided gene essentiality 
data to validate microbial GEMs, but these data have been unavail-
able for human cells due to challenges in genetically engineering these 
cells. Because the development of CRISPR technologies has enabled 

high-throughput genome-wide knockout screens in human cell lines, 
we leveraged this new data source to evaluate Human1 gene essen-
tiality predictions. We retrieved gene essentiality data from a CRISPR 
knockout screen performed in five different human cell types: GBM, 
a patient-derived glioblastoma cell line; RPE1, retinal epithelial cells; 
HCT116 and DLD1, colorectal carcinoma cell lines; and HeLa, a 
cervical cancer cell line (45). Five cell line–specific GEMs were con-
structed from Human1 using tINIT and their respective gene expres-
sion [RNA sequencing (RNA-seq)] profiles (45), and in silico gene 
deletions were performed on each GEM (Fig. 4A). Rather than 
focusing solely on growth, essential genes were defined as those which, 
upon deletion, impaired any of the 57 basic metabolic tasks (includ-
ing biomass production) that are required for human cell viability 
(data file S3) (32). This more general definition of gene essentiality 
reduces the extent to which predictions depend on the formulation 
of the biomass reaction and was hypothesized to increase sensitivity 
of the predictions by accounting for more functions of the metabolic 
network. We repeated this process using HMR2 and Recon3D as 
the template GEMs to enable comparison of Human1 performance 
with previous human model iterations.

A C

B
D

F

E

Fig. 3. Structural and functional comparison of cancer- and healthy tissue–specific GEMs. (A) Visualization of differences in models’ reaction content using a tSNE 
projection to two dimensions based on the Hamming similarity. See fig. S5 for individual point labels. (B) Heat map showing pairwise comparisons of reaction content 
between GEMs specific to healthy liver (CHOL-NT, LIHC-NT, and Liver-GTEx), blood, and their corresponding cancers (CHOL, LIHC, and LAML). (C) Relative subsystem 
coverage (number of reactions present in a model that are associated with the given subsystem) compared among GEMs of liver and liver tumors. Only subsystems with 
at least a 10% deviation from mean subsystem coverage among the models are shown. (D) Summary of metabolic task performance by the healthy and cancerous liver 
models, showing only the tasks that differed in at least one of the models. (E) Comparison of relative subsystem coverage between LAML- and blood-specific GEMs, 
showing only subsystems with at least a 10% deviation between the two models. (F) Summary of the five metabolic tasks that could be completed by the LAML GEM but 
failed in the healthy blood GEM. ROS, reactive oxygen species; GSL, glycosphingolipid; FA, fatty acid; [p], peroxisomal compartment; DHA, docosahexaenoic acid.
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We compared model-predicted essential genes for each individ-
ual cell line (as well as those essential in all five cell lines) to the set 
of essential genes identified in the corresponding CRISPR screen. 
The results were organized as confusion matrices quantifying the 
number of true and false positives and negatives (Fig. 4A), which 
were then used to evaluate prediction performance using several 
metrics (Fig. 4B). The general robustness of cells toward perturba-
tions such as single-gene knockouts (46) yields a much smaller number 
of essential genes than nonessential genes, resulting in highly im-
balanced group sizes. Accuracy is therefore an inappropriate metric 
for assessing the quality of gene essentiality predictions. For example, 
although all reference models (HMR2, Recon3D, and Human1) 
achieved similarly high accuracy across all cell types (mean accuracy 
of 86 to 88%), the same degree of accuracy is achieved if all genes are 
simply predicted as nonessential. This feature is reflected in the 
high specificity but low sensitivity exhibited by all three reference 
models. A more balanced prediction metric, the Matthews correla-
tion coefficient (MCC) (47), was therefore calculated and compared 
among the different reference and cell-specific GEMs. Although the 
MCC values were relatively low overall, they showed a substantial 
increase (more than 2.5-fold) in prediction quality for Human1- 
derived GEMs compared to HMR2- and Recon3D-derived models. 
Moreover, a hypergeometric test for enrichment of true positives in 
each model’s set of predicted essential genes showed significant 
enrichment for predictions from all Human1-derived GEMs (all 
P < 10−20), whereas HMR2- and Recon3D-derived GEMs performed 
no better than random (P > 0.05) in predicting essential genes for 
the RPE1 cell line and/or those common to all five cell lines (fig. S8).

To further verify the improvement in Human1 gene essentiality 
predictions, we repeated the same pipeline (Fig. 4A) using RNA-seq 
profiles and CRISPR knockout screen data for 621 human cell lines 
retrieved from the DepMap database (48, 49). The prediction per-
formance of these 1863 cell-specific GEMs (621 models derived 
from each of the three reference GEMs) was again evaluated using 
several different metrics (fig. S9, A to D), including MCC (Fig. 4C). 
The analysis further confirmed the improvement in the performance 
of Human1, which exhibited a 2.8-fold mean increase in MCC over 
Recon3D. Because the CRISPR knockout screen scored genes on a 
continuous scale, it required the use of a threshold to categorize 
genes as essential or nonessential. We therefore repeated the analysis 
with a range of threshold values to confirm that our results were 
insensitive to this parameter (fig. S10). To ensure that the selection 
of metabolic tasks was not biasing the results, we repeated the analysis 
using only biomass production to define gene essentiality. Although 
the relative performance between the three reference models was 
not affected, the results demonstrated an increased sensitivity in all 
GEMs’ predictions when using metabolic tasks instead of only bio-
mass to define gene essentiality (fig. S11, A and B).

Collectively, these results demonstrated a marked improvement 
in Human1 over previous GEMs. However, the large number and 
diversity of curations involved in the development of Human1 make 
it difficult to resolve which changes contributed to the improved gene 
essentiality predictions. We therefore repeated the gene essentiality 
analysis pipeline (Fig. 4A) and comparison with the five cell lines 
from the Hart 2015 dataset (45) for all 27 versions preceding the 
current release of Human1 (v1.3.0). Although the largest increases 
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the GEMs were compared to experimental measures of gene essentiality (45, 49) obtained from CRISPR knockout screens. (B) Comparison of gene essentiality predictions 
among the three reference GEMs and their five derivative cell line models with CRISPR screen results from Hart et al. (45). Left: Average accuracy, specificity, and sensitivity 
of predictions across the five cell lines for each reference GEM, with error bars representing the SE of the mean. Right: Comparison of the Matthews correlation coefficient 
(MCC) of the predictions for each of the reference GEMs and cell lines. The “All” category indicates genes found to be essential in all five cell lines. (C) Comparison of gene 
essentiality predictions among the three reference GEMs and their 621 derivative cell line models with CRISPR screen results from the DepMap database (49).
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in performance were the result of updates to model genes or gene- 
reaction rules (based on database information, other GEMs, or the 
literature), other curations such as mass-balancing reactions and 
correcting reversibility of reactions associated with the electron 
transport chain also contributed to increases in Human1 predictive 
performance (table S3 and fig. S4D).

An enzyme-constrained human model
Human GEMs are often poorly constrained because of the limited 
availability of measured flux data, as well as the reliance of human 
cells on essential amino acids and vitamins as nutrients in addition 
to a dominant carbon source such as glucose (50). The GECKO 
(enhancement of a Genome-scale model with Enzymatic Constraints 
using Kinetic and Omics data) modeling framework was developed 
to integrate enzyme abundance and kinetic data into GEMs to con-
strain the flux space to a more meaningful region without requiring 
extensive nutrient exchange data (51). We therefore applied the 
GECKO framework to Human1-derived GEMs to generate enzyme 
constrained ecGEMs. GECKO implements enzyme constraints by 
incorporating the enzymes into their catalyzed reactions as pseudo- 
metabolites with a stoichiometric coefficient inversely proportional 
to their turnover rate (kcat). The explicit incorporation of enzymes 
allows the use of absolute proteomics datasets as constraints for 
each protein. If protein measurements are not available, the total 
protein content can be used as a global constraint for an additional 
pseudo-metabolite (protein pool) from which all enzymes are drawn.

To evaluate the improvement in flux predictions for ecGEMs 
derived from Human1, we used 11 NCI-60 cell line–specific GEMs 
generated during the gene essentiality analysis (part of the DepMap 
dataset) for which reliable nutrient exchange rate data (52, 53) were 
available. Other NCI-60 cell lines were excluded as their metabolite 
exchange data were deemed unreliable due to early depletion of one 
or more nutrients (53, 54). Enzyme constraints were incorporated 
into each of these cell-specific GEMs using the GECKO framework, 
yielding 11 cell-specific ecGEMs (Fig. 5A).

After generating the cell-specific ecGEMs, we sought to evaluate 
the impact of the enzyme constraints on the accessible (feasible) 
flux space. An approach often used to assess the feasible flux range 
for all reactions in a model is flux variability analysis (FVA) (55). 
We conducted FVA on each of the 11 cell-specific ecGEMs and 
compared the flux variabilities with the corresponding non-ecGEMs. 
The analysis revealed a substantial reduction in solution space, 
where the median decrease in flux variability across the 11 cell line 
models ranged from 3.5 to 7 orders of magnitude (Fig. 5B, fig. S12, 
and data file S4).

The integration of enzyme constraints substantially reduced the 
available flux space of Human1 but did not guarantee that this space 
was more accurate or biologically meaningful. We therefore sought 
to validate the ecGEMs by comparing predicted exchange fluxes 
with measured fluxes for 26 different metabolites and comparing 
growth rates (data file S5) (52). Fluxes were simulated by maximizing 
biomass production while specifying only which metabolites were 
present in the medium (Ham’s medium)—no uptake or excretion 
rates were provided. Under these conditions, exchange fluxes cannot 
be predicted by non-ecGEMs because the solution is unbounded 
(the maximum growth rate is effectively infinite). However, all 
ecGEMs were able to predict finite exchange fluxes for each of the 
26 metabolites as well as growth rates, where most (~78%) were 
in reasonably good agreement with experimental measurements 

(Fig. 5C). The largest disagreements involved the overprediction of 
fluxes for folate, -ketoglutarate, and aspartate and an underpredic-
tion for pyruvate, carnitine, and ornithine.

To further explore the improvement in flux predictions upon 
incorporating enzyme constraints into Human1-derived GEMs, we 
investigated the effect of specifying one or more metabolite ex-
change rates in addition to the media composition. Comparison of 
predicted to measured growth rates for the 11 cell lines revealed that 
non-ecGEMs could only achieve bounded solutions with errors 
comparable to their enzyme-constrained counterparts if the ex-
change rates of glucose, lactate, and at least one essential amino acid 
(threonine, in this case) were specified (Fig. 5D). These results also 
highlight an important feature of the enzyme-constraint frame-
work: The greatest advantages and improvement in flux predictions 
are achieved when experimental exchange rates are limited or 
unavailable, which is most often the case when modeling human 
systems. However, when such flux measurements are available, the 
potential improvement offered by enzyme constraints becomes 
limited, as illustrated in the most constrained simulation in Fig. 5D.

The ability to estimate metabolic fluxes and growth rates with 
reasonable accuracy through the integration of enzyme constraints 
with Human1 represents a substantial development in human 
metabolic modeling. Whereas previous applications of human GEMs 
have largely been restricted to network-based analyses, the enzyme 
constraint formulation enables simulation-based approaches in the 
absence of metabolite exchange information.

DISCUSSION
We developed Human1, a systematically curated and version- 
controlled human GEM. Human1 is the unification of the parallel 
HMR and Recon human GEM lineages and effectively represents 
HMR3 and Recon4 with the aim of consolidating scientific efforts 
into a more efficient and coordinated approach to modeling human 
metabolism. We used Human1 to compare metabolic network 
structure and function across different healthy tissue and tumor 
types and demonstrated improved reliability of gene essentiality 
predictions for human cells; Human1 furthermore enables accurate 
simulation of cell growth and metabolite exchange rates given 
limited flux information.

The value of the rigorous curation process that was applied 
to Human1 is exemplified in part by the improved performance in 
gene essentiality predictions compared to other human GEMs 
(Fig. 4, B and C). These improvements can be attributed to the inte-
gration of enzyme complex information from multiple models and 
databases into Human1 followed by careful curation of gene-reaction 
associations. The development of Human1 extended beyond gene- 
reaction associations and gene essentiality analyses, including an 
extensive mass and energy balancing process, yielding a 100% 
stoichiometrically consistent GEM with more than 99% mass-balanced 
reactions. Furthermore, the quantification of these metrics over the 
curation process (fig. S4, A to D) enabled us to link various opera-
tions to changes in model performance or quality. This can help 
others identify where to focus efforts when applying this procedure 
to another organism or system, particularly if they are interested in 
improving one or two specific metrics.

An important feature of GEM-based analyses is that GEMs allow 
for simulation of flux through a metabolic network, enabling pre-
diction of growth rates and intracellular reaction fluxes. Traditional 
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simulations of human GEMs involve specifying external parameters 
(such as metabolite uptake rates) and internal parameters (such as 
specific growth rate and internal flux splits) to capture metabolic 
phenotypes, particularly in cancer (52). Measurements to determine 
these parameters in vivo are challenging or currently impossible, 
resulting in poorly constrained flux predictions and hindering the 
ability of GEMs to describe human metabolism where it matters 
most—within humans. In this work, we presented the construction 
and analysis of human ecGEMs, which integrate enzyme kinetics 
and optionally proteomic data to allow physiologically meaningful 
flux simulations given little or no metabolite exchange information 
(51). This formalism enables flux simulations by specifying internal 
model constraints using more readily available omics data rather than 
defining external model constraints based on metabolite exchange 
rates, greatly expanding the application potential of Human1, 
particularly for modeling metabolism of tissues and tumors in vivo.

As a complement to Human1, we developed the Metabolic Atlas 
web portal. This portal supplements and enriches the features of 
Human1 by providing users with deeper information on model 

components (for example, listing all reactions involving a given 
metabolite) and links to external databases (such as HPA, Ensembl, 
and MetaNetX). Metabolic Atlas also offers interactive compartment 
and subsystem maps to visualize and navigate Human1 content. 
By presenting the content in a more visual and connected format, 
Metabolic Atlas unlocks the information and potential of Human1 
for those who are unfamiliar with GEMs but are interested in 
human metabolism.

Although GEMs provide versatile tools for the exploration of 
metabolism, their value is contingent upon their quality. Researchers 
rely on GEMs to be meticulously curated and frequently updated to 
ensure that they are consistent with current knowledge. Furthermore, 
this process should be done in a manner that is open, systematic, 
and reproducible. We therefore constructed Human1 in a version- 
controlled GitHub repository (https://github.com/SysBioChalmers/
Human-GEM), where its latest iteration (v1.3.0 at the time of writing) 
and complete history are publicly available. This formulation allows 
the implementation of improvements and repairs to the model on 
the order of days to weeks, rather than several months to years as is 

Fig. 5. Generation and analysis of human ecGEMs. (A) Graphical representation of the pipeline used to construct NCI-60 cell line–specific ecGEMs from Human1. 
(B) Cumulative distribution of flux variability among reactions in HOP62-GEM and ecHOP62-GEM. Only the ~3200 reactions that carried a flux of >10−8 mmol/gDW hour 
when optimizing biomass production in HOP62-GEM were included in the plot. Distributions for all 11 cell lines are shown in fig. S12. (C) Comparison of predicted with 
measured exchange fluxes (log10-transformed absolute flux values) for the 11 cell-specific ecGEMs, where only the set of metabolites present in the growth medium 
(Ham’s medium) was specified. Different colored markers represent the different cell lines. Metabolites whose fluxes were systematically under- or overpredicted among 
the different models are labeled in circles, whereas the other ~78% lie within the shaded oval. Note that metabolites along the bottom of the plot have a predicted flux 
of zero but are shown here as having the absolute minimum measured value to avoid logarithm of zero. (D) Boxplots showing the relative error in predicted growth rate 
for the 11 cell-specific ecGEMs and non-ecGEMs. “Unbounded” indicates that the solutions are effectively unbounded and therefore have unquantifiable (infinite) error. 
Colored markers on the x axis denote the exchange constraints that were cumulatively added to the models when making predictions. “Media” indicates that only the 
metabolites present in the growth medium were specified, without constraining their exchange rates. “Glucose,” “Lactate,” and “Threonine” indicate that the exchange 
flux for those metabolites in the model was constrained to the measured value.
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the case with traditional GEM releases. We expect this or analogous 
approaches to become common practice in GEM development be-
cause the rapid progress of the field requires a model development 
framework that can keep pace while maintaining transparency and 
reproducibility.

SUPPLEMENTARY MATERIALS
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provide a means of consolidating efforts in refining human genome-scale metabolic models.
Human1 and Metabolic Atlas advance the ability to model metabolic pathways relevant to human health and disease and 
predicting genes that are essential for specific metabolic tasks, and estimating metabolic fluxes and growth rates. Thus,
They demonstrated the utility of Human1 by highlighting potential metabolic vulnerabilities in acute myeloid leukemia, 
The authors also developed Metabolic Atlas (https://www.metabolicatlas.org/), an online platform for exploring Human1.
metabolism that unified two parallel model lineages using an open source repository to enable rapid, trackable updates. 

 generated Human1, an extensively curated, genome-scale model of humanet al.human metabolism. Robinson 
Genome-scale models enable a holistic understanding of the interconnected pathways that form the basis for

Reconstructing human metabolism in silico
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